A CLASSIFICATION OF OUR LIMNEPHILID CADDICE FLIES.

 BY NATHAN BANKS, EAST FALLS CHURCH, VA.The Limnephilidæ are the most prominent family of caddiceflies in temperate regions. Their classification has been largely based on the spur formula; this is undoubtedly valuable, but as it broke down in places, I have tried many times to find other characters. I divided the group into two on the presence or absenceof spines on the under side of the last joint of the hind tarsi. Dr Ulmer has brought up a few exceptions. Some I believe are due to the fact that the species is wrongly placed, but in certain Chatopteryx it does not hold, but when used in connection with the armature of the front tibix, it is decisive. The venation in this family is most distressingly uniform, and I have found little not already utilized. The large bristles back or inward of the ocelli I have used as of generic value; and the development of the strips of bristles on the mesothorax I also consider important. I had hoped to find more characters in the face, and palpi; and think that the vestiture of face may yet be used with success. However, I present this preliminary table in the hope that its use may discover the weak points and suggest new characters. I am loath to make so many new genera; but I believe that all are distinct groups, and future study may show some of them to be better placed as subgenera.

Key to the Genera of Limnephilide.

1. Last joint of hind tarsus with one or more distinct (usually black) spines beneath; tibia I always spined to base
(Limnephilince) 2•
Last joint of hind tarsus without a distinct spine beneath: if one is occasionally present, then the tibia I is not spined to base
(Drusince) 18 .
2. No prominent macrochætæ behind or inward from ocelli, although sometimes hairs much smaller than macrochætæ; tips of fore wings not obliquely truncate
At least one prominent macrochæta behind or inward from each ocellus, about equal in size to the macrochretre of the posterior warts; tips of fore wings often obliquely truncate
3. Bristles on the veins no longer than those on the membrane, or barely so; membrane not granulate; median part of mesonotum with some bristle-bearing granules; the pronotum rather large; hind wings much excised on outer margin.. 4 Bristles on the veins noticeably longer than those on the membrane; median part of the mesonotum without bristlebearing granules; hind wings scarcely excised on outer margin
4. Outer margin of fore wings sinuately emarginate; vertex without distinct posterior warts ..

Glyphotalius.
Outer margin of fore wings not emarginate; posterior warts distinct

Arctacia.
-5 In hind wings a cross-vein between the subcosta and radius near tip; vertex convex, smooth, posterior warts reduced

Astenophylax.
No such cross-vein in the hind wings, vertex flat; posterior warts well developed
di. Vertex, part of thorax, and fore wings with dense appressed hair; basal cross-veins very weak; fore wings not granulate, with a median silvery stripe Hesperophylax, n. gen. (Platyphylax occidentalis Bks.)
Vertex not with dense appressed hair 7
7. Spurs 1, 2, 2, in hind wings the discal cell does not reach before the me:lian fork; fore wing roughened Allegophylax, n. gen. (Platyphylax subfasciata Say).
Spurs 1, 3, 3, or $1,3,4 \ldots \ldots \ldots \ldots \ldots \ldots$
S. Spurs 1, 3, 4....... 9 Spurs 1, 3, 3 \quad man................................... 11
9. In the hind wings the discal cell reaches plainly before the forking of the median vein 10
In the hind wings the discal cell not before the forking of median vein; membrane of fore wings roughened

Eustenace, n. gen.
(Stenophylax limbatus McL.)
10. Large species; wings very broad; in fore wings the front side of discal cell is slightly concave.

Stenophylax̣.
Smaller species: elongate wings; in fore wings the front side of discal cell is nearly straight

Rhadicoleptus.
11. In the hind wings the discal cell but little if any before the forking of the median vein: second apical cell of fore wings wide at base, membrane granulate Pycnopsyche.
In the hind wings the discal cell plainly before the forking of median vein 12
12 Large full winged species; membrane not granulate

Clistoronia, n. gen. (Halesus magnus Bks.)
Small, female short-winged; hairs on the membrane of fore wing as long as those on the veinsPsychoronia, n. gen. (Psilopteryx brevipennis Bks.)
13. Anal cell not divided at base; spurs $1,3,3$; fourth apical cell in hind wings broad

Platycentropus.
Anal cell divided as usual at base; spurs usually $1,3,4 \ldots \ldots \ldots$
14. Fifth joint of tarsus I with spines beneath; bristles on veins barely longer than on the membrane.........Grammotaulius. Fifth joint of tarsus I without spines beneath; bristles on veins much longer than those on membrane

15
15. Hind wings strongly emarginate on outer margin near end of the cubitus; pronotum large and prominent; discoidal cell very long
Hind wings scarcely emarginate at end of cubitus; pronotum less prominent.................. .. 17
16. Fore wings long and slender, tips rounded nabolina.

Fore wings shorter, tips more acute; pronotum longer

Colpotaulius.
17. Fourth apical cell in hind wings narrowed at base; mesothoracic strips long; outer margin of fore wings oblique

Limnephilus.
Fourth apical cell in hind wings not narrowed at base; mesothoracic strips short; outer margin of fore wings more rounded Anabolia.
18. Bristle-bearing granules scattered over the mesonotum without leaving a median smooth area; pronotum large and prominent; fork 3 in both wings pedicellate; spurs $1,3,4$

Leptophylax.
Bristle-bearing granules arranged in two strips, leaving a smooth median area
19. Posterior and anterior anastomoses of fore wings not separated; no macrochretie behind ocelli; forks 1 and 3 in hind wings pedicellate: spurs 1, 3. 4 ..
Posterior anastomosis at least width of a cell before the anterior anastomosis 20
20. Outer margin of fore wings sinuately excised; macrochæete behind ocelli; spurs 1, 2. 2

Glyphopsyche.
Outer margin of fore wings entire. 21
21. Fork 3 absent in hind wings 22
Fork 3 present in hind wings 23
22. Spurs 1, 3, 3; no wart between ocelli and the posterior warts Oligophlebodes.
Spurs 1, 2, 2; a distinct wart between the ocelli and the posterior wartsNeophylax.
23. Stigma with a cross-rein at its base, or at least strongly coriaceous 24
Stigma without cross-vein, and not especially prominent 27
24. First apical cell narrowed at base; stigma not very prominent, but with cross-veins at base 25
First apical cell broad at base; stigma coriaceous 26
25. Spurs 1, 2, 4 ; discal cell of hind wings open A patania.Spurs $1,3,4$; discal cell of hind wingsclosedAllomyia, n. gen.(A patania tripunctata Bks.)
26. Spurs $1,3,3$; membrane not granulate nor roughened

Halesechila.
Spurs 1, 2, 2: membrane more or less granulate; hairs on membrane as long as those on the veins.

Chilostigma.
27. Each cheek with a prominent spine beneath; first apical cell extending a long way back on the discal cell

Allophylax
No such spine on the cheek 2828 A large tuft of long hairs at anal base of fore wings; outerfringe on coxa I. longer than width of coxa; antenne stronglycrenulate beneath; ocelli large; tibia I densely spined tobase; bristles of veins not prominent; in hind wings discalcell reaches long kefore forking of median vein; largespecies

Dicosmacus.
Hair at anal base shorter, less dense, and that on anterior coxæshort; smaller species; bristles of veins usually distinct 29
29. Spurs 1, 3, 3 30
Spurs $1,2,2$, or $1,2,4$, or $1,3,4$ 32
30. Anal cell not divided at base; basal veins obsolete; radius bentat stigma; an ocellar macrochreta...........Hylepsyche, n. gen.
(Halesus indistinctus Walk.)
Anal cell divided as usual, most of basal cross-veins distinct 31
31. Radius bent at stigma, which is very distinct; membrane not granulate Halesochila.
Radius scarcely bent at stigma, which is not especially distinct; no ocellar macrochreta. Drusus.
32. Spurs 1, 3, 4; no distinct ocellar macrochætæ 33
Spurs 1, 2, 2, or $1,2,4$ 35
33. Fork 3 in fore wings acute at base, sometimes pedicellate Algonquina, n. gen.
(Parachiona parvila Bks).
Fork 3 in fore wings not acute, but reaching before theanastomosis34
34. Anastomosis is placed before end of the subcosta; the apical cells very long Anisogamus.Anastomosis beyond end of the subcosta, apical cellsnormalA polopsyche, n. gen.
(Stenophylax minusculus Bks.)
35. Ocellar macrochætæ present; spurs 1, 2, 4; wings rather narrow,first fork reaches a long distance back on discalcellEcclisomyia.
Ocellar macrochata absent, spurs $1,2,2$, or $0,2,2$; membranegranulate36
36. Discal cell shorter than the pedicel or barely longer Potamorites.
Discal cell much longer than its pedicel 37
37 Radial vein scarcely bent at the stigma, wings less broad
Radial vein strongly bent at the stigma; wings broad

Notes on the GeNera

Arctacia-Includes A consocia Walk. The genus Philarctus is very close and perhaps identical

Hesperophylax and Allegophylax - These were formerly included in Platyphylax, but, as already noted by McLachlan and 1 lmer, not congeneric. Allegophylax also includes P. lepida Hag.

Eustenace-Inclucles also the Stenophylax gentilis of McLachlan.
Rhadicoleptus-Our Asynarchus fumosus and A. flazicollis will go in Wallengren's genus, and are quite different in appearance from the typical broad winged Stenophylax.

A symarchus-The type species, A. fusorius, will run to Anabolia, and I see little reason for separating it; various other species, iteratus, amurensis, etc., will aslo go to Anabolia, but A. conosus runs to Stenophylax; it should form another gemus.

Clistoronia and Psychoronia include each only a single species.
Allomyia includes.but one species.
Drusus- In this I include IIalesus sparsus Bks. from Newfoundliand.

Halesus - 1 do not find any true representatives of this in our fama; in the above table it would run out near Platycentropus, having ocellar macrochatis, and 1,3,3 spurs; but the anal area is normally divided.

Ecclisomyia-The European Ecclisoptery: has spurs 1, 2, 3; first fork not so far back on discal cell, and no ocellar macrochatte.

Algonquina, type Parachiona pareula Bks., I propose for several species which I formerly kept in Parachiona, but the latter is quite different.

Ironoquia-Includes only the one species I have previously placed in Chetopterygopsis. In this latter genus there are ocellar macrochretar. The genera IIeliconius and Anisitella are really Chetopterygopsis with a variation in spur formula; they have the same peculiar fore wings, and also ocellar macrochrete. Catadice has no ocellar macrochetie.

Limnephilus-This genus contains by far a larger number of species than any other genus in the family, and several are rather aberrant and show affinity to A nabolia. Goniotaulius should be maintained, but I have not been able to find characters, except that the ocellar macrochrete are nearer to each other than in the true Limnephilus.

